Towards a Conceptual Framework for Interactive
Enterprise Architecture Management Visualizations

Michael Schaub, Florian Matthes, Sascha Roth
{michael.schaub | matthes | sascha.roth} @in.tum.de

Abstract: Visualizations have grown to a de-facto standard as means for decision-
making in the management discipline of enterprise architecture (EA). Thereby, those
visualizations are often created manually, so that they get soon outdated since underly-
ing data change on a frequent basis. As a consequence, EA management tools require
mechanisms to generate visualizations. In this vein, a major challenge is to adapt
common EA visualizations to an organization-specific metamodel. At the same time,
end-users want to interact with the visualization in terms of changing data immediately
within the visualization for the strategic planning of an EA. As of today, there is no
standard, framework, or reference model for the generation of such an interactive EA
visualization.

This paper 1) introduces a framework, i.e. an interplay of different models to real-
ize interactive visualizations, 2) outlines requirements for interactive EA management
visualizations referring to concepts of the framework, 3) applies the framework to a
prototypical implementation detailing the therein used models as an example, and 4)
compares the prototype to related work employing the framework.

1 Introduction

Today’s enterprises cope with the complexity of changes to highly interconnected busi-
ness applications whereas local changes often result in global consequences, i.e.impact
the application landscape as a whole. At the same time, change requests to business ap-
plications or processes are required to be fast and cost-effective in response to competitive
global markets with frequently changing conditionsf WR09, Ros03]. Enterprise Architec-
ture (EA) management promises to balance between short time business benefit and long
term maintenance of both business and IT in an enterprise [MWFO08, MBF ™ 11]. Thereby,
having a holistic perspective of the EA is indispensable. In this vein, visualizations have
grown to a de-facto standard as means for strategic decision making in the management
discipline of EA. Concepts formally describing EA management visualizations are sum-
marized as system cartography', whereby the generation of visualizations out of existing
data is not yet described in depth [Wit07], i.e. currently there exists no standard, frame-
work, reference architecture, or best-practice for generating EA visualizations.

Slightly later than the discipline itself, also tool support for EA management emerged
[MBLS08, BBDFT11]. With respect to their visualization capabilities, the range of tools
for EA management reaches from mere drawing tools to a model-driven generation of vi-

!Formerly known as software cartography [Mat08].

sualizations. The former approach has clear drawbacks since visualizations are created
manually in a handcrafted, error-prone, and inefficient process. The later approach is of-
ten limited to a single information model aka metamodel. Thereby, such an information
model has to try to capture the entirety of all relevant entities across all business domains
and industry sectors. Since this is an endeavour doomed to fail, EA vendors chose to of-
fer mechanisms for extending a ‘core’ information model. Since no standard information
model for EAs exists, enterprises tend to use an organization-specific information model
reflecting their information demands and tend to adopting the enterprise’s terminology, i.e.
aforementioned extension mechanisms are frequently used. At the same time, respective
visualization algorithms do not adapt to those changes automatically, i.e. the visualizations
have to be adapted to the extensions leading to extensive configuration or additional im-
plementation/customization efforts. Since there is no standard, framework, or reference
model for generating such an interactive EA visualization, we conclude with the following
research question:

‘How does a common framework or reference model for generating interac-
tive EA visualizations look like?’

The remainder of this chapter is structured as follows: Section 2 introduces a conceptual
framework for generating interactive visualizations in general and in particular for EA
management. An outline of requirements for interactive EA management visualizations
is given in Section 3. The framework is then applied to a prototypical implementation in
Section 4. Subsequently, Section 5 revisits related approaches and compares them to the
prototype employing the introduced framework. Finally, Section 6 concludes this paper
and gives a brief outlook on open research questions.

2 Generating interactive visualizations

Figure 1 illustrates an overview of a conceptual framework to generate interactive visual-
izations that is detailed in the following. The framework consists of:

A data model which is considered as the actual data d within a data source that can be
retrieved by a query q. Depending on the nature of the data source, different fields may
have different access permissions [BMR'10, BMM™*11]. Therefore, a data interaction
model d; captures the different access permissions for each concrete x € d, i.e. access
rights and permissions on data level but not schema level. As an example users of a cer-
tain department might only get information about business applications in their particular
business unit. An information model that describes the schema i,, that the data model
d is based on. “An information model is a representation of concepts, relationships, con-
straints, rules, and operations to specify data semantics for a chosen domain of discourse”
[Lee99]. An interaction model i that subsumes the interactions that are allowed upon
the information model level, i.e. which entity can be created, read, updated, or deleted.
For instance, a certain role can only create business applications but is not allowed to
create business units. An abstract information model which can be a template for a
certain information model or type/entity therein. Based on the observations of Buckl et
al. in [BEL™07], organizations use recurring patterns to describe their managed informa-
tion. Especially in [Sch11], Schweda shows that recurring patterns of information models

Data model

Data interaction
model

query-

View data model

Information
model

Interactive View (Visualization)

transformation

Symbolic model

Interaction
model

Abstract
information
model

Abstract
interaction
model

View data Symbolic
interaction interaction
model model
Viewpoint
View model Visualization
model
View interaction . V|sua_l
interaction
model
model
VBB
Abstract . Abs_trac_t
. visualization
view model
model

Abstract view
interaction
model

Abstract visual
interaction
model

Figure 1: A conceptual framework to generate interactive visualizations

have been observed which he synthesized to so-called information model building blocks
(IBBs). Such an information model template, fragment, or building block comes with a
certain abstract interaction model that describes e.g. predefined access rights synthe-
sized as best practices.

A view data model v = ¢(d) such that v C d U g1, whereby ¢; are results of ¢ that are
calculated out of d, e.g. aggregations or average values. A view data interaction model
C d; which is derived from ¢. In some cases, q reduces d; not only by the selected values
of d, but also additional interactions, e.g. aggregated values cannot be edited regardless
of access rights for a specific x € d. A view model is the schema v, of v, such that
Um C iy U g2 is derived from g, whereas go describes the part of the schema, which has
been created entirely by ¢, i.e. in general g2 ¢ 4,,. A view interaction model v; C i
which is determined by g, i.e. depending on a particular g interactions of ¢ are enabled or
not by v;. For instance, on aggregated values, updates are prohibited, whereas relationships
and transitive relationships® could be updated® based on i. An abstract view model which
defines the information demands for a particular visualization blueprint. The abstract view
model v, can be used as a basis to perform a pattern matching, i.e. matching for the pattern
given by v, on i,, (see e.g. [BURV11, BHR"10a]). An abstract view interaction model
which defines permitted interactions based on the information demands v, .

A symbolic model s,, summarizes the rendered symbols, i.e. instances of shapes like
rectangles, lines, etc., such that ultimately s,, is the visualization as such. A symbolic
interaction model offers interactions on the actual visualization. These interactions are of
general concern for all s,,,, e.g. navigation or adaptive zooming [CG02], and do not relate
to d or i,,. A visualization model vis,, is the definition of visual primitives, i.e. shapes
like rectangles, lines, etc. and simple compositions thereof. Thereby, s, is an instantia-
tion of vis,, which has been fully configured, e.g. a red dotted line. A visual interaction
model vis; are the interactions, that come with selections s C vis,,. Thereby, s ise.g. a
rectangle which is draggable and may change its size on user manipulation. The instan-
tiated and configured mapping of v,, to vis,, can be summarized as a viewpoint in line
with ISO/IEC 42010:2007 (cf. [Int07]). An abstract visualization model vis, that de-
scribes more complex compositions of elements of vis,,,. Thereby, vis, is not an instance
of a vis,, but a predefined composition, i.e. blueprint or building block, with addition-
ally specified variability points defined in vis, that may modify the actual appearance of
Sm. An abstract visual interaction model that describes possible interactions from the
pure visual point of view with respect to the predefined configurations. For instance, a
text not fitting inside a rectangle is cut after reaching a maximum length and a ‘...” string
is appended. In addition to cutting off the over-sized text so that the text object visually
fits, a tool tip is added to give the end-user feedback of the actual text contained. Such a
behaviour is independent from a concrete visualization and thus can be defined in an ab-
stract manner therefore constituting a separate model. A described mapping of v, to vis,
including variability points can be summarized as a viewpoint building block (VBB) in
line with Buckl et al. [BDMS10].

2As used e.g. in the visualizations introduced in [BMR* 10].
3Such an update may require to create stub objects or require additional user interventions depending on the
concrete information model.

3 Requirements for interactive EA visualizations

With a focus on EA management, we identified the following requirements for interactive
EA visualizations which will be explained with regard to the aforementioned conceptual
framework.

As outlined above, in the context of EA management enterprises tend to use organization-
specific information models since there is no common standard EA model to describe
an entire organization’s information demands. Consequently, it has to be ensured that
an arbitrary information model can be visualized dynamically, i.e. an EA visualization
tool should be able to generate visualizations out of data without the need to manually
adapt to information models (Rel). More technically speaking, this also implies that the
mapping of an information model to a visualization model must be performed dynamically
at runtime and be configurable by end-users (Rel.1).

EA management visualizations are not only used to view data but are also consulted
when making strategic decisions. These often require impact analyses which can be
performed best in a graphical manner, i.e. by manipulating the symbolic model directly
(Re2) performing ‘what-if” analyses. EA management has many perspectives and an-
gles to view at depending on different stakeholders with different concerns ending up in
stakeholder-specific visualizations highlighting relevant data for a special issue [AKRSO0S,
1L08, Mat08, BGS10]. Interactive EA visualizations must be able to visualize a subset
of the data model or the information model (Re2.1) while offering valid interactions and
keeping consistency [DQvS08]. Thereby, these manipulations should not only influence
the visualization but also underlying data so that changes to the symbolic model are prop-
agated to the respective data model and information model (Re2.2), being permitted and
constrained by an underlying data interaction model and interaction model.

Interactions with the visualization, i.e. the symbolic model, should be preferably smooth.
Following [Nie94] “the limit for having the user feel that the system is reacting instan-
taneously” is about 0.1 second. To provide EA visualizations in a decentralized manner
(cf. [BMNSO09]), a solution is intended to use a client/server architecture allowing a cen-
tralized data model and information model while the generated visualizations can be de-
centrally viewed and manipulated (Re3). In this vein, a major challenge is the reduction of
needed round-trips for propagating changes in the symbolic model, which is client-sided
to the data model, possibly located at the server. During such a round-trip all kinds of
interactions have to be locked in order to guarantee that the semantic integrity of the data
model is not violated through any further incompatible interactions following the ACID
(atomicity, consistency, isolation, durability) properties. Possible round-trips may take up
to a couple of seconds leading to decreased user adoption. As a consequence as many as
possible restrictions related to the permitted user interactions, defined by the interaction
model, should be available intermediately within the client such that manipulations to the
symbolic model are limited to a minimum and hence increase usability (Re3.1).

In [BELMOS8], Buckl et al. have shown that visualizations, so-called V-Patterns, recur in
the discipline of EA management. Buckl et al. also synthesized these V-Patterns in so-
called viewpoint building blocks (VBB). Considering the framework explained above,

these V-Patterns are viewpoints whereas the paradigm of VBBs is adapted. Buckl et
al. showed in [BELMOS] that recurring patterns are reused and combinations thereof.
Therefore, EA visualizations must be defined as pre-configured, parameterized* building
blocks (Re4) in order to increase re-usability of existing software artifacts and acceler-
ate development periods. Moreover, EA visualizations must be generated employing such
building blocks allowing combinations thereof (Re4.1) in order to enable more complex
combinations of visualizations out of building blocks by end-users.

4 Prototypical implementation

Based on the framework introduced in Section 2 a prototypical implementation is devel-
oped which will be described in this section referring to the requirements of the previous
section.

In the following, the process of generating an EA visualization, i.e. generating a symbolic
model, is explained in detail by an exemplary information model and data model. The EA
visualization generated is taken from Buckl et al. (V-Pattern 26 in [BELMO8]) since they
used a pattern-based approach, i.e. they observed this kind of visualization with underlying
an information model at least three times® in practice®.

—— = — = — = 1__|

Business Application (BA) Business Unit (BU) Location

| +name : string x [tname: String | +name : String Inner
+developmentFrom : Date * 1 [tname : String
| :dleveloZanentT_oD: I:ate * 1 | [+rect1Start : Date
| plannedfrom : Date 1 Employee +rectlEnd : Date
+plannedTo : Date rect2Start : Date Outer
+productionFrom : Date +firstName : String ltrect2End : Date +name : String
| +productionTo : Date * |+lastName : String +rect3$tart. : Date *
| -retirementFrom : Date | -+email : 5"”“8 +rect3End : bate !
-retirementTo : Date | +phone : String [+rectdStart : Date
| [+rect4End : Date
- _ _—_ _—____—________l
(a) Information model with view model (in dashed lines) (b) Abstract view model

Figure 2: Pattern Matching of abstract view model and information model

Figure 2(a) shows an excerpt from an information model consisting of business appli-
cations related to each other and business units that use them and are based at a certain
location having employees that work at business units. An exemplary instantiation of this
information model is illustrated in Figure 3 which is used in the following example to
generate a time-interval map (cf. [BELMOS8] or Figure 5).

The first step towards generating a visualization is to define a VBB as an abstract tem-
plate (Red4). Thereby, an abstract view model (see Figure 2(b)) is created stating that
‘outer’ and ‘inner’ entities linked via a 1:n relationship are the information demands for

“4In this context, parameterized means explicitly defined variability points.
S5For an explanation of the ‘rule of three’ see [AIST77].
This proves practical relevance as desired for a design science approach (cf. [HMPR04]).

CRM System : Business Application (BA)

\
name : string = CRM System
developmentFrom : Date = 01.01.2012 \
developmentTo : Date = 01.04.2012
plannedFrom : Date = 01.11.2011 ‘
plannedTo : Date = 01.01.2012 ‘
productionfrom : Date = 01.04.2012
productionTo : Date = 01.01.2013 ‘
retirementFrom : Date = 01.01.2013

retirementTo : Date = 01.03.2013 j—{n Shared Services : Business Unit (BU }—‘—{ Munich ; Location |

\

\

\

\

\

\

‘ hame : String = IT Shared Services |name : String = Munich |

Accounting System : Business Application (BA)

\ \
‘ name : string = Accounting System ‘
\

\

\

\

developmentFrom : Date = 01.01.2012
developmentTo : Date = 01.06.2012

g:::Zg;;mg'a?:fm‘llsz'lzlo'ﬁm | Martina Musterfrau : Employee Max Mustermann : Employee
productionfrom : Date = 01.06.2012 | firstName : String = martina String = max
productionTo : Date = 01.01.2013 lastName : String = musterfrau lastName : String = mustermann
retirementFrom : Date = 01.01.2013 | el String = musterfrau@company.tid | [email:String = mustermann@company.td
retirementTo : Date = 01.02.2013 phone : String = +49 123 798 456 phone : String = +49 123 456 789

\

Figure 3: Data model with view data model (in dashed lines)

this VBB. This formal specification of the information demands is used to match the pat-
tern of abstract view model against a given information model with the pattern matching
using library IncQuery [BHR ™' 10b]. The pattern matcher searches the information model
to match for potential ‘outer’ entities required to have a name attribute connected via a
1:n relationship to ‘inner’ entities that are required to offer four pairs of start-fields and
end-fields and a name attribute. This technique is used to offer an end-user the possibility
of visualizing data with an arbitrary information model (Rel) by choosing the informa-
tion of interest from a list of potential ‘outer’ and ‘inner’ entities (Rel.l). Besides the
information demands, the VBB defines symbols that are used to visualize the chosen in-
formation, i.e. it describes variability points of elements of the visualization model in an
abstract visualization model (Figure 4(a)). For instance, symbols like rectangles or cir-
cles commonly offer different color-configurations or even could be used interchangeably
(e.g. use circles instead of rectangles). Commonly, elements of the visual model become
visible in a symbolic model, while the composite symbol, shown as dotted line in Fig-
ure 4(a), is used as logical container for a set of symbols and is not directly visible. As
shown in Figure 4(a) the abstract visualization model defines that each inner entity is rep-
resented through three kinds of symbols, namely a composite symbol, a text symbol and
four rectangle symbols. Furthermore, the composite symbol is conceived to enable the
setting of constraints/rules for all symbols contained therein. Figure 4(a) illustrates text
and rectangle symbols embodying different attributes that are used for the transforming
process later on. Finally the VBB defines a mapping between abstract view model and
abstract visualization model. Therefore, the VBB states whether an object/attribute of the
abstract view model is directly bound to a corresponding object/attribute of the abstract
visualization model and how exactly. Moreover, the VBB also defines objects/attributes
of the abstract view model that are employed to calculate 7 one or more objects/attributes
of the abstract visualization model. In the given example the name attribute of an ‘inner’
entity is directly bound to the name attribute of a text symbol, whereas pairs of start- and
end-date attributes are used to calculate the width of rectangle symbols. After matching

"We call these derived attributes which can be the result of any calculation, e.g. a sum of values, transitive
relationships in the information model, etc.

name: string
color: color

X-pos: integer

y-pos: integer

background: color
width: integer
X-pos: integer
y-pos: integer

background: color
width: integer
X-pos: integer
y-pos: integer

background: color
width: integer
X-pos: integer

y-pos: integer

background: color
width: integer
X-pos: integer
y-pos: integer

D Rectangle symbols

,,,,,,

(a) VBB: Abstract visualization model

Background: color = blue
width: integer
x-pos: integer
y-pos: integer

Background: color = blue
width: integer

background: color = green
width: integer
X-pos: integer
y-pos: integer

name: string = CRM System
color: color = black
X-pos: integer
y-pos: integer

background: color = red
width: integer
x-pos: integer
y-pos: integer

x-pos: integer
y-pos: integer

D Text symbols

D Rectangle symbols

(b) VBB: Visualization model

Figure 4: The connection between abstract and non-abstract visualization model

the pattern of information demand of an abstract view model to determine which part of an
information model is needed the view data model highlighted with dashed lines in Figure
3 is extracted from the data model (Re2.1). A so-called viewpoint configuration is used
to set relevant parameters so that the viewpoint can process the view data model that is
passed over to it. Thereby, the viewpoint configuration states which fields of the infor-
mation model are mapped to which fields of the abstract view model which are chosen
from a list of all possible entities and combinations thereof by the end-user (Rel.1) after
the pattern matching. In the given example each pair of from and to values is mapped to
one pair of rectXStart and rectXEnd, i.e. developmentFrom is used for rectlStart and de-
velopmentTo is mapped to rectl End. All other rectX fields of the abstract view model are
mapped in a similar way. Furthermore, the field name of a business application entity is
mapped to the inner name attribute of the abstract view model. Besides the concrete map-
ping of an information model to an abstract view model, the abstract visualization model is
parametrized. In our example, the colors of the rectangles and the font-size of the text are
set. The viewpoint configuration itself is passed to a restful Web Service as a JSON string
where it is processed and passed over to the VBB. The resulting runtime models that are
created through parameterizing the abstract view model and abstract visualization model
are the view model (Figure 2(a)) and elements from the visualization model (Figure 4(b))
of the viewpoint. Being fully configured the viewpoint is finally used to process all enti-
ties of the view data model. In this step for each entity of the view data model, one row
of the time-interval map, whose structure is defined in the visualization model, is added
to the symbolic model that can be seen in Figure 5. At this point, also the layout is done,
i.e. setting x/y position and width parameters are calculated on the basis of the attributes
of the view data model. In our prototypical implementation, this result is JavaScript code
utilizing the Raphaé&l framework to generate the visualization in the web browser of the
client (Re3). In addition, the VBB not only specifies symbols or groups thereof in terms
of composite symbols, but also equips them with predefined interactions so that the user
can manipulate the visualization (Re2). In order to be able to set only permitted inter-
actions, different information sources are used. As explained in Section 2 the interaction

Jan 2011 Feb 2011 Mar 2011 Apr 2011 May 2011 Jun 2011 Jul 2011 Aug 2011 Sep 2011 Oct 2011 Nov 2011 Dec 2011

Corporate Portal

I
|
SAPBI }\ | []

Accounting System || []

ERP System

SCM System

Figure 5: Symbolic model

model determines which actions are allowed upon the data model without affecting the in-
tegrity of the information model, whereas the data interaction model checks access rights
on a particular element in the data model. On the other hand, the abstract view interaction
model states which kind of interactions are allowed upon the abstract view model within
this VBB. In the given example (cf. Figure 6) the fields rectXStart and rectXEnd of the
inner entities can be changed (in italic) , whereas the name field must remain the same (in
bold). Propagating these changes to the data model is only allowed because they are based
upon bijective functions. In contrast, when using derived attributes that are calculated us-
ing aggregated values, interactions are not permitted since an interaction not based upon
a bijective function would inevitably cause trouble while propagating changes to the data
model (Re2.2). Additionally the abstract visual interaction model determines the permit-

Inner Outer

+ name: string * 1 +name: string
+ rect1Start: string
+ rect1End: string
+ rect2Start: string
+ rect2End: string Bold: read-only
+ rect3Start: string
+ rect3End: string
+ rect4Start: string
+ rect4End: string

Italic: read / write

Figure 6: Abstract view interaction model

ted interactions upon the different symbols that are used for rendering the symbolic model
later on, i.e. changes to the width of an element can be interpreted as changes of a date.
Interactions are represented by constraints that are attached to different symbols, whereas
for each possible interaction that can be triggered, like moving or dragging and dropping
symbols, a constraint is implemented with individual parameters that can be customized
to restrict this interaction. As an example, the rectangles of the time-interval map can
be moved horizontally only, whereas the composite symbols are limited to vertical move-
ment. Figure 7(a) shows each composite and rectangle symbol equipped with a Movement
constraint to achieve the ascribed functionality. The Movement constraint itself has three
parameters, direction, minimum and maximum, that have to be set up in order to enable
the equipped symbol to be moved in the given direction and between the minimum and
maximum value. Accordingly, if a symbol should be moved horizontally and vertically,
two Movement constraints will have to be attached to the symbol. Besides Movement, fur-

ther constraints, like Resizing or Containment have been implemented, but are not needed
for this particular kind of visualization. Each of these constraints has its own parameters
set up individually in a VBB. In addition to interaction constraints, the symbolic interac-
tions we used focus on direct user feedback, i.e. tool tip texts or highlight on selection. In
our example tool tip texts are used when hovering over or dragging an end of rectangles
(rectXStart or rectXEnd). As shown in Figure 5, some of the rectangles are not filled re-
flecting read-only access gathered from the data interaction model. With the abstract view
interaction model describing which interactions are allowed upon the abstract view model
and the abstract visual interaction model stating which user interactions are allowed upon
the different symbols of the abstract visualization model, the mapping between these two
models, that is aligned with the mapping between the abstract view model and abstract
visualization model, it is specified how the permitted user interactions of the abstract vi-
sual interaction model affect the attributes of the entities of the abstract view model so
that round-trips are omitted in the first place (Re3.1). In the given example the abstract
visual interaction model prescribes that the rectangles can only be moved horizontally.
Furthermore the abstract view interaction model states that only the values of rectXStart
and rectXEnd of inner entities can be changed. In addition the mapping between these
models describes that a horizontal movement of a rectangle symbol causes the rectXStart
and rectXEnd fields of the corresponding inner entity to be updated to the current positions.
On instantiation, the VBB is configured to a viewpoint with the visualization configuration

Movement

Composite symbols Direction: vertical Composite symbols Direction: vertical
Minimum: Minimum: 150
Maximum: Maximum: 1000

Movement

Rectangle Symbols Direction: horizontal FesETEE SmEs Direction: horizontal
Minimum: Minimum: 50
Maximum: Maximum: 500

(a) VBB: Mapping of abstract visualization model (b) Viewpoint: Mapping of visualization model and
and abstract visual interaction model visual interaction model

Figure 7: Abstract visual interaction model and visual interaction model

that may contain parameters for the abstract visual interaction model which can be seen
in Figure 7(b). In our prototype, different VBBs or combinations thereof (Re4.1) can be
used. After processing all entities of the view data model the information gained from
the view interaction model and visual interaction model of the fully configured viewpoint
is used to enrich the created symbolic model with the permitted possibilities of user in-
teractions (Re2.2 & Re3.1), in terms of symbols being equipped with the corresponding
interaction constraints.

5 Related Work

This section gives a brief overview of interactive visualizations. Some of these interac-
tive visualizations constitute a visual domain-specific language, whereas others are mere
drawing tools and are not bound directly to a data and/or information model.

JS Library D3%. With the JS based library D3 it is possible to create manifold visualiza-
tions from structured data. Examining the structure of D3 it is shown that some kind of
view model can be found even within this framework, specifying the structure of the data
that can be loaded in order to generate a visualization. At this point it has to be mentioned
that due to the static view model a mapping between an arbitrary information model and
this view model has to be implemented separately. Thus only one kind of information
model can be processed at a time without creating a new mapping between a second in-
formation model and the view model. Besides the view model D3 contains a visualization
model constituting the symbols to be used for generating visualizations. Without an ex-
tension D3 contains circles, squares, crosses, diamonds and triangles as possible symbols.
Looking at D3’s possibilities for user interaction it can be seen that only rudimentary func-
tions are available. For example, it is possible to select a subset of the view data model and
update the visualization with this extract but there exists neither a possibility of changing
the visualized data nor can changes be propagated to the view data model not to mention
to the data model with respect to data integrity to the respective information model. With
regard to the above identified requirements it shows that a mapping between an arbitrary
information model and the view model has to be implemented separately, which is why
Rel is just partly fulfilled and end-user configuration (Rel.1) is not offered by D3. In con-
trast, Re2 can not be fulfilled entirely, since D3 focuses on interactions that center around
giving user feedback. D3 does provide functions for selection of subsets of the view data
model (Re2.1). In general, changes upon the symbolic model cannot be propagated back
to a data model (Re2.2). Re3 is fulfilled in partially, because D3 being a web framework
written in JavaScript, a client/server architecture can be implemented, but communication
with the server, respectively with the information model and data model would have to
be implemented separately. Hence, complete fulfillment of Re3 is not given. Addition-
ally, as all client/server communication would have to be implemented (Re3.1) is thought
not be fulfilled. Furthermore D3 offers different possibilities for definition of predefined
parametrize visualization types (Re4) that can be reused or even combined with manage-
able effort in order to create new kinds of visualizations, leading to (Re4) and (Re4.1)
being fulfilled.

yFiles. yFiles [WEKO02] is a Java class library for rendering and analyzing visualiza-
tions, especially graphs. Therefore, it provides separate packages to analyze, layout, or
draw visualizations on a Java Swing form. An exemplary application showing all of the
main features of yFiles is yEd, a tool for creating visualizations of graphs, networks, and
diagrams®. Within yFiles there exists a single static view model for all kinds of visu-
alizations that can be rendered with this framework, mainly consisting of ‘nodes’ and
‘edges’. Additionally, a separate visualization model can be found for each type of visual-

8See http://mbostock.github.com/d3/ last accessed: Oct. 26, 2011.
9See http://www.yworks.com/de/products_yed_about .html last accessed Oct. 26, 2011.

ization, determining the symbols to be used for visualizing the entities of the view model
and for combining them in order to generate the symbolic model. Furthermore, there ex-
ists a visual interaction model for each visualization model stating which interactions are
permitted for each symbol of the generated symbolic model. Using yFiles comes with
a mapping that has to be prepared in order to process an organization-specific informa-
tion model and corresponding data model, thus Rel is partially fulfilled since the view
model is static. Visualizations generated using yFiles include possibilities of parameteriz-
ing these in a user-friendly manner (Rel.1). As yFiles contains manifold possibilities for
user interaction (Re2) is fulfilled, whereas selections of subsets of the data model are not
included (Re2.1). Re2.2 cannot be fulfilled completely as changes to the symbolic model
are propagated to the view model but not to the data model. Since yFiles is implemented
using Java there is a possibility of implementing a solution as an applet or using Java Web
Start technology to transfer interaction constraints to a client (Re3). As yFiles offers no
possibility for propagating changes to the data model (Re3.1) is not fulfilled. Only a few
types of visualizations can be generated without substantially extending yFiles and other
visualizations cannot be predefined (Re4). Also, yFiles does not include any possibility of
combining different visualization types (Re4.1).

Visio. Microsoft Visio is a desktop application to create any kind of symbolic models,
reaching from business processes in BPMN notation to construction blueprints. Among
the possibility of creating all these visualizations by hand, Visio offers the possibility of
creating these out of data files, or databases out of a predefined format. However this
option is severely restricted as it uses a static view model and does only provide a small
amount of parameters to set when querying an information model. For instance, generating
an organizational chart out of a spreadsheet or database can serve as an example, as just a
few parameters have to be mapped to possible fields that can be shown in the visualization.
Thereby, one of them is indicating the relationship between the entities. In this context Vi-
sio contains a static view model, being bound to a very limited information model. Besides
this view model there exist visualization models and visual interaction models within Visio
for each kind of visualization that can be rendered. Visio’s potential to be used for generat-
ing EAM visualizations can be shown by considering the above mentioned requirements.
Visio is able to use different information models, thus Rel can be fulfilled partially. So
as Rel.1, because Visio offers a small set of possibilities of parameterizing visualizations.
As Visio offers manifold possibilities for user interaction Re2 is completely fulfilled, but
Visio lacks the functionality of selecting subsets of the data model, hence Re2.1 is not
fulfilled. The missing functionality of propagating changes within the symbolic model to
the view model or the data model leads to Re2.2 not being fulfilled. As Visio is a desktop
application Re3 and Re3.1 are not covered, as no client/server architecture can be im-
plemented though no statement about round-trips can be made. Similar to yFiles, Visio
includes a limited set of visualization types that can be parametrized in some cases, but
cannot be predefined (Re4) and does not support combination thereof (Re4.1).

Generic Modeling Environment (GME). The main purpose of the GME is to create a
(visual) domain-specific language (DSL) with separated information model and its rep-
resentation in the sense of a symbolic model. Therefore, GME uses a metamodel which
is represented through MetaGME that describes the main aspects of the employed infor-

D3 yFiles Visio GME GMF
Rel D D ®d [[
Rel.l | O [D O O
Re2 D [[[[
Re2.1 | B O O O O
Re22 | @ D O [[]
Re3 D & @) @ @
Re3.1 | O O O O O
Re4 [O O [[
Red.1 | @ O O O O

Table 1: Visualization capabilities of the presented approaches

mation model. Furthermore, model related constraints can be integrated using the Object
Constraint Language (OCL). These constraints are equipped with priorities and corre-
sponding actions that have to be performed in case of a violation of themselves. Evaluating
GME against our requirements, GME shows that it is possible to generate visualizations
out of any kind of information model (Rel), but only one concrete information model can
be processed at a time and no configuration at runtime is offered, especially when it comes
to support for an end-user configuration (Rel.1). Moreover, GME offers far-reaching pos-
sibilities for user interaction (Re2), but a selection of subsets of the data model is not
included (Re2.1). All changes to the symbolic model are propagated to the data model
leading to (Re2.2) being fulfilled entirely. Just like Visio, GME is a desktop application,
wherefore Re3 and Re3.1 cannot be fulfilled for aforementioned reasons. As it is one of
GME’s main purposes it includes functionalities for predefined visualization types (Re4),
but it does not provide any possibility for combining two or more of these types in order
to create new kinds of visualizations (Re4.1).

Graphical Modeling Framework (GMF). Like GME, GMF aims at providing a frame-
work to construct a DSL with separated information model and graphical representa-
tion of entities thereof. Given that GMF is based on the Graphical Editing Framework
(GEF) [RWCI11] it has the same capabilities for constructing and manipulating mod-
els as the GEF. GMF offers a wide range of possibilities of implementing constraints,
i.e. constraints can be formulated in OCL, as regular expressions or implemented as Java
code. Due to their similarity the GME and GMF provide similar capabilities of fulfill-
ing the requirements. GMF also has the ability to process any kind of information model
(Rel), but it has to be adapted to each information model that shall be used (Rel.1). GMF
also provides manifold possibilities for user interaction (Re2), but does not include any
functionalities for a selection of subsets of the data model (Re2.1). Users changes to the
symbolic model are propagated to the respective data model (Re2.2) while the integrity of
the information model is guaranteed. Like GME, GMF is a desktop application, which is
why (Re3) and (Re3.1) cannot be fulfilled. As GMF allows the definition of predefined
visualization types but does not allow the combination of these types (Re4) is fulfilled,
while (Re4.1) cannot be fulfilled.

6 Conclusion and Outlook

After motivating interactive visualizations for EA management, this paper introduced a
conceptual framework to realize interactive visualizations. In this paper we demonstrated
how the framework can be used 1) to compare different visualization frameworks and
2) as a reference architecture to describe and implement visualization tools. During the
latter, we showed how we implemented the different models and how they interact with
each other for a specific visualization. Thereby, the chosen visualization originates from
practice and was found as recurring pattern in the EA management domain.

In line with the design science approach of Hevner [HMPRO4], further research will de-
tail and refine the models of the introduced framework by incorporating feedback from
practical applications. We expect that for the EA management discipline only a number of
relevant viewpoint building blocks and respective interactions have to be developed while
the remaining ones are combinations thereof. In particular parameters, variability points of
visualizations and further relevant interactions for industry have to be found by empirical
evaluation of the created design artefact. Currently, the prototypical implementation has
been applied to a pattern-based case. Further research can broaden the scope these visual-
izations are applied to and also observe interactions actually employed by end-users.

In order to describe interactions, a formal language for describing interactivity is currently
missing. As of today, images with ‘arrows and boxes’ summarized as mock-ups are used
in combination with a full-text description of possible interactions so that behavior and
semantics become clear to end-users. Further research could address this issue incorpo-
rating different ways currently used to describe interactive behavior of visualizations and
prove the usability by end-user studies. Such a language could facilitate the way end-users
evaluate mock-ups of interactive visualizations in general and in particular for the domain
of EA management.

References

[AIST77] Christopher Alexander, Sara Ishikawa, Murray Silverstein, Max Jacobson, Ingrid
Fiksdahl-King, and Shlomo Angel. A Pattern Language. Oxford University Press,
New York, NY, USA, 1977.

[AKRSO8] Stephan Aier, Stephan Kurpjuweit, Christian Riege, and Jan Saat. Stakeholderori-
entierte Dokumentation und Analyse der Unternehmensarchitektur. In Heinz-Gerd
Hegering, Axel Lehmann, Hans Jiirgen Ohlbach, and Christian Scheideler, editors,
GI Jahrestagung (2), volume 134 of LNI, pages 559-565, Bonn, Germany, 2008.
Gesellschaft fiir Informatik.

[BBDF'11] Marcel Berneaud, Sabine Buckl, Arelly Diaz-Fuentes, Florian Matthes, Ivan Monahov,
Aneta Nowobliska, Sascha Roth, Christian M. Schweda, Uwe Weber, and Monika
Zeiner. Trends for Enterprise Architecture Management Tools Survey 2011. Technical
report, Technische Universitdt Miinchen, 2011. (to appear).

[BDMS10] Sabine Buckl, Thomas Dierl, Florian Matthes, and Christian M. Schweda. Building
Blocks for Enterprise Architecture Management Solutions. In Frank et al. Harmsen,

[BELT07]

[BELMOS]

[BGS10]

[BHR " 10a]

[BHR™10b]

[BMM™11]

[BMNSO09]

[BMR'10]

[BURV11]

[CGO2]

[DQvSO08]

[HMPRO4]

editor, Practice-Driven Research on Enterprise Transformation, second working con-
ference, PRET 2010, Delft, pages 17-46, Berlin, Heidelberg, Germany, 2010. Springer.

Sabine Buckl, Alexander M. Ernst, Josef Lankes, Kathrin Schneider, and Christian M.
Schweda. A pattern based Approach for constructing Enterprise Architecture Manage-
ment Information Models. In A. Oberweis, C. Weinhardt, H. Gimpel, A. Koschmider,
V. Pankratius, and Schnizler, editors, Wirtschaftsinformatik 2007, pages 145-162,
Karlsruhe, Germany, 2007. Universititsverlag Karlsruhe.

Sabine Buckl, Alexander M. Ernst, Josef Lankes, and Florian Matthes. Enterprise
Architecture Management Pattern Catalog (Version 1.0, February 2008). Technical
report, Chair for Informatics 19 (sebis), Technische Universitit Miinchen, Munich,
Germany, 2008.

Sabine Buckl, Jens Gulden, and Christian M. Schweda. Supporting ad hoc Analyses
on Enterprise Models. In 4th International Workshop on Enterprise Modelling and
Information Systems Architectures, 2010.

G. Bergmann, A. Horvith, 1. Rath, D. Varr6, A. Balogh, Z. Balogh, and A. Okros.
Incremental Model Queries over EMF Models. In ACM/IEEE 13th International Con-
ference on Model Driven Engineering Languages and Systems, 2010.

Gabor Bergmann, Akos Horvéth, Istvan Rath, Déniel Varré, Andras Balogh, Zoltan
Balogh, and Andrds Okros. Incremental Evaluation of Model Queries over EMF
Models. In Model Driven Engineering Languages and Systems, 13th International
Conference, MODELS 2010. Springer, Springer, 2010.

Sabine Buckl, Florian Matthes, Ivan Monahov, Sascha Roth, Christopher Schulz, and
Christian M. Schweda. Enterprise Architecture Management Patterns for Enterprise-
wide Access Views on Business Objects. In European Conference on Pattern Lan-
guages of Programs (EuroPLoP) 2011, Irsee Monastery, Bavaria, Germany, 2011.

Sabine Buckl, Florian Matthes, Christian Neubert, and Christian M. Schweda. A
Wiki-based Approach to Enterprise Architecture Documentation and Analysis. In The
17™ European Conference on Information Systems (ECIS) — Information Systems in a
Globalizing World: Challenges, Ethics and Practices, 8.—10. June 2009, Verona, Italy,
pages 2192-2204, Verona, Italy, 2009.

Sabine Buckl, Florian Matthes, Sascha Roth, Christopher Schulz, and Christian M.
Schweda. A Method for Constructing Enterprise-wide Access Views on Business Ob-
jects. In Klaus-Peter Fiahnrich and Bogdan Franczyk, editors, GI Jahrestagung (2),
volume 176 of LNI, pages 279-284. GI, 2010.

Gabor Bergmann, Zoltdn Ujhelyi, Istvan Rath, and Déniel Varré. A Graph Query Lan-
guage for EMF models. In Jordi Cabot and Eelco Visser, editors, Theory and Prac-
tice of Model Transformations, Fourth International Conference, ICMT 2011, Zurich,
Switzerland, June 27-28, 2011. Proceedings, volume 6707 of Lecture Notes in Com-
puter Science, pages 167-182. Springer, Springer, 2011.

Alesandro Cecconi and Martin Galanda. Adaptive zooming in web cartography. In
Computer Graphics Forum, volume 21, pages 787-799. Wiley Online Library, 2002.

Remco M. Dijkman, Dick A.C. Quartel, and Marten J. van Sinderen. Consistency in
multi-viewpoint design of enterprise information systems. Information and Software
Technology, 50(7-8):737 — 752, 2008.

Alan R. Hevner, Salvatore T. March, Jinsoo Park, and Sudha Ram. Design Science in
Information Systems Research. MIS Quarterly, 28(1):75-105, 2004.

[ILO8]

[Int07]

[Lee99]

[Mat08]
[MBF*11]

[MBLSO08]

[MWEFO08]

[Nie94]
[Ros03]

[RWC11]

[Schl1]

[WEKO02]

[Wit07]

[WRO09]

Hannakaisa Isoméki and Katja Liimatainen. Challenges of Government Enterprise
Architecture Work — Stakeholders’ Views. In Maria Wimmer, Hans Jochen Scholl,
and Enrico Ferro, editors, Electronic Government, 7th International Conference, pages
364-374, Turin, Italy, 2008. Springer.

International Organization for Standardization. ISO/IEC 42010:2007 Systems
and software engineering — Recommended practice for architectural description of
software-intensive systems, 2007.

Y.T. Lee. Information modeling: From design to implementation. In Proceedings of
the Second World Manufacturing Congress, pages 315-321. Citeseer, 1999.

Florian Matthes. Softwarekartographie. Informatik Spektrum, 31(6), 2008.

Stephan Murer, Bruno Bonati, Frank J. Furrer, Stephan Murer, Bruno Bonati, and
Frank J. Furrer. Managed Evolution. Springer Berlin Heidelberg, 2011.

Florian Matthes, Sabine Buckl, Jana Leitel, and Christian M. Schweda. Enterprise Ar-
chitecture Management Tool Survey 2008. Chair for Informatics 19 (sebis), Technische
Universitit Miinchen, Munich, Germany, 2008.

Stephan Murer, Carl Worms, and Frank J. Furrer. Managed Evolution. Informatik
Spektrum, 31(6):537-547, 2008.

Jakob Nielsen. Usability Engineering. Elsevier LTD, Oxford, 1994.

Jeanne W. Ross. Creating a Strategic IT Architecture Competency: Learning in Stages.
MIS Quarterly Executive, 2(1), 2003.

Dan Rubel, Jaime Wren, and Eric Clayberg. The Eclipse Graphical Editing Framwe-
ork (GEF). Addison-Wesley, 2011.

Christian M Schweda. Development of Organization-Specific Enterprise Architecture
Modeling Languages Using Building Blocks. PhD thesis, TU Miinchen, 2011.

R. Wiese, M. Eiglsperger, and M. Kaufmann. yfiles: Visualization and automatic lay-
out of graphs. In Graph drawing: 9th international symposium, GD 2001, Vienna,
Austria, September 23-26, 2001 : revised papers, volume 129, page 453. Springer Ver-
lag, 2002.

André Wittenburg. Softwarekartographie: Modelle und Methoden zur systematischen
Visualisierung von Anwendungslandschaften. PhD thesis, Fakultit fiir Informatik,
Technische Universitit Miinchen, Germany, 2007.

P. Weill and J.W. Ross. IT Savvy: What Top Executives Must Know to Go from Pain to
Gain. Harvard Business Press, 2009.

